Squarefree numbers in arithmetic progressions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Palindromic Numbers in Arithmetic Progressions

Integers have many interesting properties. In this paper it will be shown that, for an arbitrary nonconstant arithmetic progression {an}TM=l of positive integers (denoted by N), either {an}TM=l contains infinitely many palindromic numbers or else 10|aw for every n GN. (This result is a generalization of the theorem concerning the existence of palindromic multiples, cf. [2].) More generally, for...

متن کامل

Carmichael Numbers in Arithmetic Progressions

We prove that when (a, m) = 1 and a is a quadratic residue mod m, there are infinitely many Carmichael numbers in the arithmetic progression a mod m. Indeed the number of them up to x is at least x1/5 when x is large enough (depending on m). 2010 Mathematics subject classification: primary 11N25; secondary 11A51.

متن کامل

Squarefree polynomials and Möbius valuesin short intervalsand arithmetic progressions

Abstract. We calculate the mean and variance of sums of the Möbius function μ and the indicator function of the squarefrees μ, in both short intervals and arithmetic progressions, in the context of the ring Fq[t] of polynomials over a finite field Fq of q elements, in the limit q → ∞. We do this by relating the sums in question to certain matrix integrals over the unitary group, using recent eq...

متن کامل

On Carmichael numbers in arithmetic progressions

Assuming a weak version of a conjecture of Heath-Brown on the least prime in a residue class, we show that for any coprime integers a and m > 1, there are infinitely many Carmichael numbers in the arithmetic progression a mod m.

متن کامل

Prime Numbers in Certain Arithmetic Progressions

We discuss to what extent Euclid’s elementary proof of the infinitude of primes can be modified so as to show infinitude of primes in arithmetic progressions (Dirichlet’s theorem). Murty had shown earlier that such proofs can exist if and only if the residue class (mod k ) has order 1 or 2. After reviewing this work, we consider generalizations of this question to algebraic number fields.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2015

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2014.12.025